Nicotinamide riboside has protective effects in a rat model of mesenteric ischaemia-reperfusion


Toropova YG, Pechnikova NA, Zelinskaya IA, Zhuravsky SG, Kornyushin OV, Gonchar AI, Ivkin DY, Leonova YV, Karev VE, Karabak IA

Acute mesenteric ischaemia is a syndrome caused by inadequate blood flow through the mesenteric vessels, resulting in ischaemia and eventual gangrene of the bowel wall. Although relatively rare, it is a potentially life-threatening condition. The maintenance of haemodynamic stability, along with adequate oxygen saturation, and the correction of any electrolyte imbalance, are of the utmost importance. However, nicotinamide adenine dinucleotide (NAD) biosynthesis modulation by precursor introduction can also be a powerful tool for preventing injury. Nicotinamide riboside is a pyridine-nucleoside form of vitamin B3 that functions as a precursor to NAD+ . The present study investigated nicotinamide riboside's effect on endothelium functional state, microcirculation and intestinal morphology in acute mesenteric ischaemia and reperfusion. Mesenteric ischaemia was simulated after the adaptation period (15 minutes) by occluding the superior mesenteric artery for 60 minutes, followed by a reperfusion period of 30 minutes. The functional state of intestinal microcirculation was evaluated by laser Doppler flowmetry. Endothelial functional activity was studied by using wire myography. Intestinal samples were stained with haematoxylin and eosin for histological analysis. The results revealed that nicotinamide riboside protects the intestinal wall from ischaemia-reperfusion injury, as well as improving the relaxation function of mesenteric vessels. Nicotinamide riboside's protective effect in small intestine ischaemia-reperfusion can be used to reduce ischaemia-reperfusion injury, as well as to preserve intestinal grafts until transplant.

Journal

International Journal of Clinical and Experimental Pathology

Model

Rat

Keywords

acute mesenteric ischaemia; ischaemia-reperfusion injury; microcirculation; nicotinamide riboside; wire myography